Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cancer Discov ; 14(4): 669-673, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571430

RESUMO

SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.


Assuntos
Neoplasias , Neurociências , Humanos , Sistema Nervoso Central , Previsões , Proteômica
2.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38496434

RESUMO

Prior studies have shown that glioma cells form synapses with neurons to receive synaptic inputs. To discern if glioma cells can send outgoing electrochemical signals in the form of action potentials (APs), we employed Patch-sequencing on surgically-resected human glioma slices. Results showed that half of patched cells in IDH1 mutant (IDH1mut) tumors demonstrate select properties of both neurons and glia and fire single, short APs. To define the transcriptional profiles of these hybrid cells (HCs) and discern if they are tumor derived, we developed a computational tool, Single Cell Rule Association Mining (SCRAM), to annotate features in each cell individually. SCRAM revealed that HCs represent a heterogenous group of tumor and non-tumor cells that are uniformly defined by both GABAergic neuron and oligodendrocyte precursor cell (GABA-OPC) transcriptional signatures. We found that GABA-OPC tumor cells express requisite voltage-gated ion channels needed to fire APs. We validated our findings in human single cell and bulk RNA-seq datasets, confirming that GABA-OPCs represent 40% of IDH1mut tumor cells, correlate with survival outcomes in IDH1mut human patients and are also found in select molecular subtypes of IDH1 wild-type tumors. These studies describe a new cell type in IDH1mut glioma with unique electrophysiological and transcriptomic properties.

3.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193532

RESUMO

Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Glioma , Animais , Humanos , Qualidade de Vida , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Glioma/complicações , Glioma/tratamento farmacológico , Sistema Imunitário , Microambiente Tumoral
4.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256095

RESUMO

Astrocytes are the most abundant glial cell type in the central nervous system, and they play a crucial role in normal brain function. While gliogenesis and glial differentiation occur during perinatal cerebellar development, the processes that occur during early postnatal development remain obscure. In this study, we conducted transcriptomic profiling of postnatal cerebellar astrocytes at postnatal days 1, 7, 14, and 28 (P1, P7, P14, and P28), identifying temporal-specific gene signatures at each specific time point. Comparing these profiles with region-specific astrocyte differentially expressed genes (DEGs) published for the cortex, hippocampus, and olfactory bulb revealed cerebellar-specific gene signature across these developmental timepoints. Moreover, we conducted a comparative analysis of cerebellar astrocyte gene signatures with gene lists from pediatric brain tumors of cerebellar origin, including ependymoma and medulloblastoma. Notably, genes downregulated at P14, such as Kif11 and HMGB2, exhibited significant enrichment across all pediatric brain tumor groups, suggesting the importance of astrocytic gene repression during cerebellar development to these tumor subtypes. Collectively, our studies describe gene expression patterns during cerebellar astrocyte development, with potential implications for pediatric tumors originating in the cerebellum.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Criança , Feminino , Gravidez , Humanos , Astrócitos , Perfilação da Expressão Gênica , Encéfalo , Transcriptoma , Cerebelo
5.
Dev Cell ; 58(24): 2819-2821, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113847

RESUMO

The microenvironment influences cell fate. In this collection of voices, researchers from the fields of cancer and regeneration highlight approaches to establish the importance of the microenvironment and discuss future directions to understand the complex interaction between cells and their surrounding environment and how this impacts on disease and regeneration.


Assuntos
Neoplasias , Humanos , Diferenciação Celular , Microambiente Tumoral
6.
Nat Commun ; 14(1): 6341, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816732

RESUMO

Stroke enhances proliferation of neural precursor cells within the subventricular zone (SVZ) and induces ectopic migration of newborn cells towards the site of injury. Here, we characterize the identity of cells arising from the SVZ after stroke and uncover a mechanism through which they facilitate neural repair and functional recovery. With genetic lineage tracing, we show that SVZ-derived cells that migrate towards cortical photothrombotic stroke in mice are predominantly undifferentiated precursors. We find that ablation of neural precursor cells or conditional knockout of VEGF impairs neuronal and vascular reparative responses and worsens recovery. Replacement of VEGF is sufficient to induce neural repair and recovery. We also provide evidence that CXCL12 from peri-infarct vasculature signals to CXCR4-expressing cells arising from the SVZ to direct their ectopic migration. These results support a model in which vasculature surrounding the site of injury attracts cells from the SVZ, and these cells subsequently provide trophic support that drives neural repair and recovery.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Camundongos , Animais , Ventrículos Laterais , Células-Tronco Neurais/fisiologia , Fator A de Crescimento do Endotélio Vascular , Neurogênese/fisiologia , Acidente Vascular Cerebral/terapia
7.
Neurooncol Pract ; 10(5): 482-490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37720399

RESUMO

Background: No consensus germline testing guidelines currently exist for glioma patients, so the prevalence of germline pathogenic variants remains unknown. This study aims to determine the prevalence and type of pathogenic germline variants in adult glioma. Methods: A retrospective review at a single institution with paired tumor/normal sequencing from August 2018-April 2022 was performed and corresponding clinical data were collected. Results: We identified 152 glioma patients of which 15 (9.8%) had pathogenic germline variants. Pathogenic germline variants were seen in 11/84 (13.1%) of Glioblastoma, IDH wild type; 3/42 (7.1%) of Astrocytoma, IDH mutant; and 1/26 (3.8%) of Oligodendroglioma, IDH mutant, and 1p/19q co-deleted patients. Pathogenic variants in BRCA2, MUTYH, and CHEK2 were most common (3/15, 20% each). BRCA1 variants occurred in 2/15 (13%) patients, with variants in NF1, ATM, MSH2, and MSH3 occurring in one patient (7%) each. Prior cancer diagnosis was found in 5/15 patients (33%). Second-hit somatic variants were seen in 3/15 patients (20%) in NF1, MUTYH, and MSH2. Referral to genetics was performed in 6/15 (40%) patients with pathogenic germline variants. 14/15 (93%) of patients discovered their pathogenic variant as a result of their paired glioma sequencing. Conclusions: These findings suggest a possible overlooked opportunity for determination of hereditary cancer syndromes with impact on surveillance as well as potential broader treatment options. Further studies that can determine the role of variants in gliomagenesis and confirm the occurrence and types of pathogenic germline variants in patients with IDH wild type compared to IDH mutant tumors are necessary.

8.
Front Oncol ; 13: 1156812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287908

RESUMO

Introduction: Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. Methods: Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an in utero electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. Results: Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. Discussion: Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection.

9.
Nature ; 619(7971): 844-850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380778

RESUMO

The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers1,2. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity3-8; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity-dependent infiltrating population present at the leading edge of mouse and human tumours that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified SEMA4F as a key regulator of tumourigenesis and activity-dependent progression. Furthermore, SEMA4F promotes the activity-dependent infiltrating population and propagates bidirectional signalling with neurons by remodelling tumour-adjacent synapses towards brain network hyperactivity. Collectively our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, and also show new mechanisms of glioma progression that are regulated by neuronal activity.


Assuntos
Neoplasias Encefálicas , Carcinogênese , Glioma , Neurônios , Microambiente Tumoral , Humanos , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Glioma/patologia , Glioma/fisiopatologia , Neurônios/patologia , Proliferação de Células , Sinapses , Progressão da Doença , Animais , Camundongos , Axônios , Corpo Caloso/patologia , Vias Neurais
10.
Sci Adv ; 9(17): eade2675, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115922

RESUMO

Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Predisposição Genética para Doença , Sequenciamento Completo do Genoma , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Proteínas Supressoras de Tumor/genética
11.
Cell ; 186(8): 1689-1707, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059069

RESUMO

The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.


Assuntos
Neoplasias , Neurociências , Humanos , Sistema Imunitário , Neoplasias/patologia , Neurônios/patologia , Microambiente Tumoral
12.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993539

RESUMO

The tumor microenvironment (TME) plays an essential role in malignancy and neurons have emerged as a key component of the TME that promotes tumorigenesis across a host of cancers. Recent studies on glioblastoma (GBM) highlight bi-directional signaling between tumors and neurons that propagates a vicious cycle of proliferation, synaptic integration, and brain hyperactivity; however, the identity of neuronal subtypes and tumor subpopulations driving this phenomenon are incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumors promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity dependent infiltrating population present at the leading edge of mouse and human tumors that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified Sema4F as a key regulator of tumorigenesis and activity-dependent infiltration. Furthermore, Sema4F promotes the activity-dependent infiltrating population and propagates bi-directional signaling with neurons by remodeling tumor adjacent synapses towards brain network hyperactivity. Collectively, our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, while revealing new mechanisms of tumor infiltration that are regulated by neuronal activity.

13.
Neuron ; 111(5): 682-695.e9, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787748

RESUMO

Seizures are a frequent pathophysiological feature of malignant glioma. Recent studies implicate peritumoral synaptic dysregulation as a driver of brain hyperactivity and tumor progression; however, the molecular mechanisms that govern these phenomena remain elusive. Using scRNA-seq and intraoperative patient ECoG recordings, we show that tumors from seizure patients are enriched for gene signatures regulating synapse formation. Employing a human-to-mouse in vivo functionalization pipeline to screen these genes, we identify IGSF3 as a mediator of glioma progression and dysregulated neural circuitry that manifests as spreading depolarization (SD). Mechanistically, we discover that IGSF3 interacts with Kir4.1 to suppress potassium buffering and found that seizure patients exhibit reduced expression of potassium handlers in proliferating tumor cells. In vivo imaging reveals that dysregulated synaptic activity emanates from the tumor-neuron interface, which we confirm in patients. Our studies reveal that tumor progression and seizures are enabled by ion dyshomeostasis and identify SD as a driver of disease.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Camundongos , Animais , Potássio , Glioma/metabolismo , Encéfalo/metabolismo , Convulsões , Neoplasias Encefálicas/patologia , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo
14.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614191

RESUMO

Glioblastoma is the most common malignant primary brain tumor. Recent studies have demonstrated that excitatory or activity-dependent signaling-both synaptic and non-synaptic-contribute to the progression of glioblastoma. Glutamatergic receptors may be stimulated via neuron-tumor synapses or release of glutamate by the tumor itself. Ion currents generated by these receptors directly alter the structure of membrane adhesion molecules and cytoskeletal proteins to promote migratory behavior. Additionally, the hyperexcitable milieu surrounding glioma increases the rate at which tumor cells proliferate and drive recurrent disease. Inhibition of excitatory signaling has shown to effectively reduce its pro-migratory and -proliferative effects.


Assuntos
Glioblastoma , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Glioblastoma/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular Neuronais/metabolismo
16.
Int J Cancer ; 152(4): 713-724, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36250346

RESUMO

Glioblastoma (GBM) is the most common primary intracranial malignant tumor and consists of three molecular subtypes: proneural (PN), mesenchymal (MES) and classical (CL). Transition between PN to MES subtypes (PMT) is the glioma analog of the epithelial-mesenchymal transition (EMT) in carcinomas and is associated with resistance to therapy. CXCR4 signaling increases the expression of MES genes in glioma cell lines and promotes EMT in other cancers. RNA sequencing (RNAseq) data of PN GBMs in The Cancer Genome Atlas (TCGA) and secondary high-grade gliomas (HGGs) from an internal cohort were examined for correlation between CXCR4 expression and survival as well as expression of MES markers. Publicly available single-cell RNA sequencing (scRNAseq) data was analyzed for cell type specific CXCR4 expression. These results were validated in a genetic mouse model of PN GBM. Higher CXCR4 expression was associated with significantly reduced survival and increased expression of MES markers in TCGA and internal cohorts. CXCR4 was expressed in immune and tumor cells based on scRNAseq analysis. Higher CXCR4 expression within tumor cells on scRNAseq was associated with increased MES phenotype, suggesting a cell-autonomous effect. In a genetically engineered mouse model, tumors induced with CXCR4 exhibited a mesenchymal phenotype and shortened survival. These results suggest that CXCR4 signaling promotes PMT and shortens survival in GBM and highlights its inhibition as a potential therapeutic strategy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/genética , Fenótipo , Humanos
17.
Neuro Oncol ; 25(3): 471-481, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044040

RESUMO

BACKGROUND: Glioblastoma is the most common and aggressive primary brain tumor. Large-scale sequencing initiatives have cataloged its mutational landscape in hopes of elucidating mechanisms driving this deadly disease. However, a major bottleneck in harnessing this data for new therapies is deciphering "driver" and "passenger" events amongst the vast volume of information. METHODS: We utilized an autochthonous, in vivo screening approach to identify driver, EGFR variants. RNA-Seq identified unique molecular signatures of mouse gliomas across these variants, which only differ by a single amino acid change. In particular, we identified alterations to lipid metabolism, which we further validated through an unbiased lipidomics screen. RESULTS: Our screen identified A289I as the most potent EGFR variant, which has previously not been characterized. One of the mechanisms through which A289I promotes gliomagenesis is to alter cellular triacylglycerides through MTTP. Knockout of Mttp in mouse gliomas, reduces gliomagenesis in multiple models. CONCLUSIONS: EGFR variants that differ by a single amino acid residue differentially promote gliomagenesis. Among the identified mechanism that drives glioma growth include lipid metabolism through MTTP. Understanding triacylglyceride accumulation may present a prospective therapeutic pathway for this deadly disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Camundongos Knockout , Glioma/tratamento farmacológico , Mutação , Neoplasias Encefálicas/tratamento farmacológico
18.
Proc Natl Acad Sci U S A ; 119(29): e2202015119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858326

RESUMO

Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.


Assuntos
Neoplasias Encefálicas , Ependimoma , Epigênese Genética , Fatores de Transcrição SOX9 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Ependimoma/genética , Ependimoma/patologia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/fisiologia
19.
J Cell Biol ; 221(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139144

RESUMO

Astrocyte reactivity can directly modulate nervous system function and immune responses during disease and injury. However, the consequence of human astrocyte reactivity in response to specific contexts and within neural networks is obscure. Here, we devised a straightforward bioengineered neural organoid culture approach entailing transcription factor-driven direct differentiation of neurons and astrocytes from human pluripotent stem cells combined with genetically encoded tools for dual cell-selective activation. This strategy revealed that Gq-GPCR activation via chemogenetics in astrocytes promotes a rise in intracellular calcium followed by induction of immediate early genes and thrombospondin 1. However, astrocytes also undergo NF-κB nuclear translocation and secretion of inflammatory proteins, correlating with a decreased evoked firing rate of cocultured optogenetic neurons in suboptimal conditions, without overt neurotoxicity. Altogether, this study clarifies the intrinsic reactivity of human astrocytes in response to targeting GPCRs and delivers a bioengineered approach for organoid-based disease modeling and preclinical drug testing.


Assuntos
Astrócitos/metabolismo , Bioengenharia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trifosfato de Adenosina/farmacologia , Astrócitos/patologia , Cálcio/metabolismo , Linhagem Celular , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Inflamação/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Sinaptofisina/metabolismo
20.
J Neurosci ; 42(8): 1587-1603, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34987109

RESUMO

Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurologic diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peritumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurologic disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. These data provide powerful new insights into human astrocyte biology in several biologically relevant states that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENT Astrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurologic diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease.


Assuntos
Astrócitos , Transcriptoma , Envelhecimento/patologia , Animais , Astrócitos/fisiologia , Feminino , Humanos , Masculino , Camundongos , Sinapses/fisiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA